3.936 \(\int \frac{\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c+d \sin (e+f x))} \, dx\)

Optimal. Leaf size=123 \[ \frac{2 \sqrt{c+d} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a \sin (e+f x)+a}}\right )}{a^{3/2} \sqrt{d} f (c-d)}-\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a}}\right )}{a^{3/2} f (c-d)} \]

[Out]

(-2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(a^(3/2)*(c - d)*f) + (2*Sqrt[
c + d]*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(a^(3/2)*(c - d)*Sqrt[d
]*f)

________________________________________________________________________________________

Rubi [A]  time = 0.551369, antiderivative size = 123, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {2916, 2985, 2649, 206, 2773, 208} \[ \frac{2 \sqrt{c+d} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a \sin (e+f x)+a}}\right )}{a^{3/2} \sqrt{d} f (c-d)}-\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a}}\right )}{a^{3/2} f (c-d)} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(3/2)*(c + d*Sin[e + f*x])),x]

[Out]

(-2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(a^(3/2)*(c - d)*f) + (2*Sqrt[
c + d]*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(a^(3/2)*(c - d)*Sqrt[d
]*f)

Rule 2916

Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*(a - b*Sin[e + f*x])
, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n]

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c+d \sin (e+f x))} \, dx &=\frac{\int \frac{a-a \sin (e+f x)}{\sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx}{a^2}\\ &=\frac{2 \int \frac{1}{\sqrt{a+a \sin (e+f x)}} \, dx}{a (c-d)}-\frac{(c+d) \int \frac{\sqrt{a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{a^2 (c-d)}\\ &=-\frac{4 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{a (c-d) f}+\frac{(2 (c+d)) \operatorname{Subst}\left (\int \frac{1}{a c+a d-d x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{a (c-d) f}\\ &=-\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a+a \sin (e+f x)}}\right )}{a^{3/2} (c-d) f}+\frac{2 \sqrt{c+d} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a+a \sin (e+f x)}}\right )}{a^{3/2} (c-d) \sqrt{d} f}\\ \end{align*}

Mathematica [C]  time = 2.72914, size = 220, normalized size = 1.79 \[ \frac{(-1)^{3/4} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3 \left (\sqrt [4]{-1} \sqrt{c+d} \left (\log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right ) \left (\sqrt{c+d}-\sqrt{d} \sin \left (\frac{1}{2} (e+f x)\right )+\sqrt{d} \cos \left (\frac{1}{2} (e+f x)\right )\right )\right )-\log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right ) \left (\sqrt{c+d}+\sqrt{d} \sin \left (\frac{1}{2} (e+f x)\right )-\sqrt{d} \cos \left (\frac{1}{2} (e+f x)\right )\right )\right )\right )-(4+4 i) \sqrt{d} \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac{1}{4} (e+f x)\right )-1\right )\right )\right )}{\sqrt{d} f (d-c) (a (\sin (e+f x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(3/2)*(c + d*Sin[e + f*x])),x]

[Out]

((-1)^(3/4)*((-4 - 4*I)*Sqrt[d]*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e + f*x)/4])] + (-1)^(1/4)*Sqrt[c +
d]*(Log[Sec[(e + f*x)/4]^2*(Sqrt[c + d] + Sqrt[d]*Cos[(e + f*x)/2] - Sqrt[d]*Sin[(e + f*x)/2])] - Log[Sec[(e +
 f*x)/4]^2*(Sqrt[c + d] - Sqrt[d]*Cos[(e + f*x)/2] + Sqrt[d]*Sin[(e + f*x)/2])]))*(Cos[(e + f*x)/2] + Sin[(e +
 f*x)/2])^3)/(Sqrt[d]*(-c + d)*f*(a*(1 + Sin[e + f*x]))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 1.283, size = 160, normalized size = 1.3 \begin{align*} -2\,{\frac{ \left ( 1+\sin \left ( fx+e \right ) \right ) \sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }}{{a}^{3/2} \left ( c-d \right ) \sqrt{a \left ( c+d \right ) d}\cos \left ( fx+e \right ) \sqrt{a+a\sin \left ( fx+e \right ) }f} \left ( \sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }\sqrt{2}}{\sqrt{a}}} \right ) \sqrt{a \left ( c+d \right ) d}-{\it Artanh} \left ({\frac{\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }d}{\sqrt{a \left ( c+d \right ) d}}} \right ) \sqrt{a}c-{\it Artanh} \left ({\frac{\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }d}{\sqrt{a \left ( c+d \right ) d}}} \right ) \sqrt{a}d \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x)

[Out]

-2/a^(3/2)*(1+sin(f*x+e))*(-a*(-1+sin(f*x+e)))^(1/2)*(2^(1/2)*arctanh(1/2*(-a*(-1+sin(f*x+e)))^(1/2)*2^(1/2)/a
^(1/2))*(a*(c+d)*d)^(1/2)-arctanh((-a*(-1+sin(f*x+e)))^(1/2)*d/(a*(c+d)*d)^(1/2))*a^(1/2)*c-arctanh((-a*(-1+si
n(f*x+e)))^(1/2)*d/(a*(c+d)*d)^(1/2))*a^(1/2)*d)/(c-d)/(a*(c+d)*d)^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 2.73173, size = 1661, normalized size = 13.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[-1/2*(sqrt((c + d)/(a*d))*log((d^2*cos(f*x + e)^3 - (6*c*d + 7*d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - 4*(d
^2*cos(f*x + e)^2 - c*d - 3*d^2 - (c*d + 2*d^2)*cos(f*x + e) + (d^2*cos(f*x + e) + c*d + 3*d^2)*sin(f*x + e))*
sqrt(a*sin(f*x + e) + a)*sqrt((c + d)/(a*d)) - (c^2 + 8*c*d + 9*d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - c^2
- 2*c*d - d^2 + 2*(3*c*d + 4*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)
^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d
^2)*sin(f*x + e))) + 2*sqrt(2)*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) + 2*sqrt(2)*sqrt(a*sin(f
*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) +
 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a))/((a*c - a*d)*f), (sqrt(-(c + d)/(a*d))*arctan(1/2*sqrt(a*sin(f*
x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(-(c + d)/(a*d))/((c + d)*cos(f*x + e))) - sqrt(2)*log(-(cos(f*x +
e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) + 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/
sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a))/
((a*c - a*d)*f)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2/(a+a*sin(f*x+e))**(3/2)/(c+d*sin(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

Timed out